Compensated Transfer Entropy as a Tool for Reliably Estimating Information Transfer in Physiological Time Series
نویسندگان
چکیده
We present a framework for the estimation of transfer entropy (TE) under the conditions typical of physiological system analysis, featuring short multivariate time series and the presence of instantaneous causality (IC). The framework is based on recognizing that TE can be interpreted as the difference between two conditional entropy (CE) terms, and builds on an efficient CE estimator that compensates for the bias occurring for high dimensional conditioning vectors and follows a sequential embedding procedure whereby the conditioning vectors are formed progressively according to a criterion for CE minimization. The issue of IC is faced accounting for zero-lag interactions according to two alternative empirical strategies: if IC is deemed as physiologically meaningful, zero-lag effects are assimilated to lagged effects to make them causally relevant; if not, zero-lag effects are incorporated in both CE terms to obtain a compensation. The resulting compensated TE (cTE) estimator is tested on simulated time series, showing that its utilization improves sensitivity (from 61% to 96%) and specificity (from 5/6 to 0/6 false positives) in the detection of information transfer respectively when instantaneous effect are causally meaningful and non-meaningful. Then, it is evaluated on examples of cardiovascular and neurological time series, supporting the feasibility of the proposed framework for the investigation of physiological mechanisms.
منابع مشابه
Rainfall-runoff process modeling using time series transfer function
Extended Abstract 1- Introduction Nowadays, forecasting and modeling the rainfall-runoff process is essential for planning and managing water resources. Rainfall-Runoff hydrologic models provide simplified characterizations of the real-world system. A wide range of rainfall-runoff models is currently used by researchers and experts. These models are mainly developed and applied for simulation...
متن کاملGyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملEfficient Transfer Entropy Analysis of Non-Stationary Neural Time Series
Information theory allows us to investigate information processing in neural systems in terms of information transfer, storage and modification. Especially the measure of information transfer, transfer entropy, has seen a dramatic surge of interest in neuroscience. Estimating transfer entropy from two processes requires the observation of multiple realizations of these processes to estimate ass...
متن کاملNumerical Study of Natural Convection Heat Transfer in a Horizontal Wavy Absorber Solar Collector Based on the Second Law Analysis
Literature about entropy generation analysis of a wavy enclosure is scare. In this paper. a FORTRAN cod using an explicit finite-volume method was provided for estimating the entropy production due to the natural convection heat transfer in a cosine wavy absorber solar collector. The volumetric entropy generation terms both the heat transfer term and the friction term were straightly calculated...
متن کاملA Recipe for the Estimation of Information Flow in a Dynamical System
Information-theoretic quantities, such as entropy and mutual information (MI), can be used to quantify the amount of information needed to describe a dataset or the information shared between two datasets. In the case of a dynamical system, the behavior of the relevant variables can be tightly coupled, such that information about one variable at a given instance in time may provide information ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 15 شماره
صفحات -
تاریخ انتشار 2013